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We describe a numerical scheme for computing time-dependent 
solutions of the incompressible Navier-Stokes equations in the 
primitive variable formulation. This scheme uses finite elements for the 
space discretization and operator splitting techniques for the time 
discretization. The resulting discrete equations are solved using 
specialized nonlinear optimization algorithms that are computationally 
efficient and have modest storage requirements. The basic numerical 
kernel is the preconditioned conjugate gradient method for symmetric, 
positive-definite, sparse matrix systems, which can be efficiently 
implemented on the architectures of vector and parallel processing 
supercomputers. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

In this paper, we describe a numerical scheme for the 
time-dependent, incompressible Navier-Stokes equations 
which uses finite elements for the space discretization, 
operator splitting methods for the time discretization and 
specialized nonlinear optimization techniques for the solu- 
tion of the discrete operator equations. This general 
approach has been extensively investigated by Glowinski 
and co-workers in recent years (see, for example, Bristeau, 
Glowinski, and Periaux [2]; Glowinski and Le Tallec [7]; 
and for related stability and convergence results, Fer- 
nandez-Cara and Beltran [4]), and its overall potential for 
large-scale viscous flow computations can be attributed to 
the following two factors: First, with the use of appropriate 
matrix storage techniques and solution algorithms, the 
memory requirements are modest, even for three-dimen- 
sional applications. Second, the basic algorithms and 
numerical kernels can be structured to take good advantage 
of the architectural characteristics of high-performance 
vector and parallel supercomputers. 

In the first phase of this research, we have developed a 
computer program for two-dimensional incompressible 
viscous flow problems that differs from the previous work in 
some ways, but most notably in the following two aspects. 
First, we have used a discontinuous basis for the pressure, 

which leads to a better approximation of the incom- 
pressibility condition and permits stable solutions to be 
computed to somewhat larger Reynolds numbers. In addi- 
tion, this choice leads to a more efficient implementation of 
a solution technique based on the augmented Lagrangian 
method, as described further in Section 3. Second, we have 
used the preconditioned conjugate gradient algorithm for 
solving certain symmetric, positive-definite matrix systems, 
rather than a Cholesky factorization method. This choice 
leads to a program that is storage efficient and, with suitable 
preconditioning strategies, computationally efficient as well. 
In addition, the solution of these matrix systems is required 
in an “inner” loop of the program, where good initial 
guesses are invariably available, and this can be exploited 
by the iterative conjugate gradient method for rapid con- 
vergence to the solution. 

The outline of this paper is as follows: Section 2 gives the 
problem formulation and describes the methods used for the 
time and space discretization. Section 3 contains the details 
of the various nonlinear optimization algorithms used for 
solving the individual discrete operator equations. Numeri- 
cal experiments with some test problems are described in 
Section 4. Section 5 contains a summary and identifies some 
of our plans for further research. 

2. PROBLEM FORMULATION AND DISCRETIZATION 

I. The incompressible Navier-Stokes equations in the 
primitive variable formulation are given by 

all 
-=vv2u-u.vu-vp+f, at 

v.u=o, 

(2.1 

(2.2) 

where u(x, t) is the fluid velocity, p(x, t) is the pressure, and 
v is the inverse of the Reynolds number. We consider flows 

0021~9991/92 S5.00 
Copyright 0 1992 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

384 



INCOMPRESSIBLE VISCOUS FLOW SIMULATION 385 

in a simply-connected, closed domain Q c %?‘, n = 2, 3, with 
boundary X?. The boundary conditions that we admit are 

U’UI, on rl, (2.3) 

au 
vn-pn=g, on r2, 

where XJ = l-i LJ I-z, and n denotes the unit outward 
normal on dQ. The boundary condition (2.4) does not 
have a physical interpretation, although it appears as a 
natural boundary condition for the weak form of (2.1). 
Nevertheless, numerical evidence suggests that it can 
be used in certain situations (such as distant outflow 
boundaries) without leading to appreciable errors in the 
solution. We also note that if r, = 0, then the pressure p is 
defined only up to an arbitrary constant, and in this case the 
boundary velocity must satisfy the compatibility condition 

s II, .ndS=O. (2.5) 
fl 

The initial conditions on the velocity are taken in the form 

4% 0) = udx), (2.6) 

where II,, must be solenoidal in order for it to be an 
admissible velocity field. This condition, however, need not 
be enforced strictly when the primary interest is only in 
the ultimate steady state that is obtained after an initial 
transient. Finally, we note that in the present numerical 
scheme, the pressure is always determined implicitly from 
the velocity at the end of each time step, so that no initial 
condition is required for it. 

II. To motivate the discussion of the operator-splitting 
scheme used for the time integration, we introduce a penalty 
parameter r, where r % 1 and write 

v . u = p/z. (2.7) 

This is used to eliminate the pressure from (2.1), to obtain 

au 
-=vv2u-u.vu-Tv(v.u)+f. at (2.8) 

With this formal manipulation, the right-hand side of (2.8) 
is seen to consist of viscous and pressure correction terms 
that are linear functions of the velocity and an inertial term 
which is a nonlinear function. Although we do not use (2.7) 
and (2.8) as a practical time-integration scheme, we note 
parenthetically that algorithms that might be based on it 

must take into account the following two additional factors 
beyond the usual stability and accuracy requirements. First, 
the pressure correction term in (2.8) must be treated 
implicitly in the time-integration in order to ensure that the 
updated velocity field satisfies the penalized incom- 
pressibility condition (2.7) for large z. Second, for large 
values of the penalty parameter, the corresponding matrix 
system for (2.8) becomes quite ill-conditioned and leads to 
difficulties in obtaining iterative convergence and solution 
accuracy. 

The time integration scheme in this paper is based on a 
particular additive splitting of the three individual operators 
that appear on the right-hand side of (2.8). Unfortunately, 
the exact analysis of this splitting is made difficult by the 
nonlinearity and by the dependence of the various terms 
on the spatial derivates of the velocity. For simplicity, 
therefore, we consider the following case which does not 
have these complications and then extend the results that 
are obtained for it to (2.8) by analogy. 

Consider, therefore, the linear evolution equation 

$=du+J (2.9) 

where RZ’ can be written as the sum of three linear operators 
&i, d2, and S$3, which do not necessarily commute with 
each other. Then the scheme described below is second- 
order accurate for I, = 1 - l/G, A, = ,/? - 1. For other 
choices of Ai, A2 with 21, + il, = 1, the scheme is first-order 
accurate. In either case, 0 is a free parameter: 

U*--Un 
z= [ed, +J&]u* 

‘1 

+ [(l --O)dl +d2] u”+f, (2.10a) 
u**-.u* 

A2 At 
= [(l-Q&i +S!J u** 

+[edl+dsdi’3]u*+f, (2.10b) 

24 n+l 

-**= [8d,,d3, ZPfl 
;I, At 

+ [(J - 0) d, + =4] u** +f: (2.1Oc) 

In order to show this, we consider only the casef= 0 to 
simplify the exposition; the proof for nonzero f requires 
some additional algebra but uses the same methods. From 
a Taylor’s series expansion for u“+’ and using (2.9), we 
obtain 

I+At&‘+(df)22]un+O(At)3. (2.11) 
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NOW from (2.10a), we obtain by some straightforward 
manipulations, 

u* = [Z-A, At(ed~ + d3)] -l 

x [Z-A1 dt((1 -e)S4i+&f*)] Un, (2.12) 

and after expanding and making use of the linearity of the 
operators, this can be written as 

u* = [Z+ 1, At ai’ + L:(At)’ (8dI + cd;) d)] U” + O(At)3. 

(2.13) 

In a similar fashion, we can derive 

u** = [Z+ II, At d + J;(At)’ 

~(1-0)d,+d~)d]u*+O(At)~ (2.14) 

and 

U “+‘= [Z+l, At d+I;(At)’ (RdI+d3)d] u**+O(At)3. 

(2.15) 

Combining (2.13 b( 2.15), we obtain 

24 n+ ’ = [Z+ (24 + A,) At d + (At)2 (2; + 241,)d 

+ (At)2 ((2n304 + d3) 

+ A;(( 1 - 0) &i + d2)} -01]+ O(At)3. (2.16) 

The assertion then follows by noting that the O(At) terms in 
(2.11) and (2.16) are identical for the 21, +1, = 1 and, in 
addition, if 1, = 1 - l/G, A,= ,,& 1, then the O(At)’ 
terms are also identical. 

This result can be heuristically extended to the time dis- 
cretization of (2.8), where we now replace the penalty term 
by the more exact incompressibility condition. Letting c~i, 
a2 denote the quantities (2, At)-’ and (2, At)-‘, respec- 
tively, the following sequence of subproblems is used to 
advance the solution at each time step. First, we solve 

CCIU* -evv2u* +vp* 

=f+CIIU~+(i-e)vv~U~-U~.vU~, (2.17a) 

V.u”=O, (2.17b) 

u*=u 1 on r,, _ 

ev~-p*u=g-(l-e)v~ 
(2.17~) 

on r2, 

and then, 

a,~**-(i-e)v~2U**+~**.~~** 

=f+ ~r,~*+e~v2u*-vp*, 

u**=u 
1 on r,, 

(2.18a) 

(l-e)v~=g-ev~+p*n 
(2.18b) 

on r2, 

and, finally, 

C11U*+1-evv2u~+1+vp~+~ 

=f+a,u**+(i-e)vvb**-u**.vu**, (2.19a) 

v.u ) n+l_-j (2.19b) 

U n+lzu 
1 on 6, 

ev au"+' -- 
an ' 

"+ln=g-(l--8)v~ on r2. (2.19~) 

We note that in the subproblems (2.17) and (2.19) which 
are identical in ail respects, the viscous and pressure terms 
are treated implicitly. On the other hand, in (2.18), the 
viscous and inertial terms are treated implicitly and the 
incompressibility condition is not enforced. The advantage 
of this formulation is the decoupling of the numerical 
difficulties posed by the incompressibility constraint and 
the inertial nonlinearities, so that efficient methods can be 
developed for overcoming them individually. For example, 
the subproblems (2.17) or (2.19) can be reformulated as 
quadratic optimization problems with additional linear 
constraints. On the other hand, the solution of the sub- 
problem (2.18) can be obtained by a least-squares residual 
minimization approach, which leads to an unconstrained 
nonlinear optimization problem. In either case, robust 
solution procedures can be developed whose complexity is 
determined primarily by the number of velocity unknowns 
in the discretization (rather than by the sum of the velocity 
and pressure unknowns), and this aspect alone can lead to 
significant computational savings. 

The parameters I, and ;1, can be chosen using the 
guidelines given for the linear evolution equation (2.9) and 
experimental results show that first-order accuracy is 
always achievable. The parameter t3 can be used to modify 
the stability characteristics of the discretization and, for this 
purpose, it seems advisable to restrict its range to the inter- 
val (0, 1) in order that the linear parts of the operators in 
(2.17)-(2.19) remain positive-definite. Apart from this 
Bristeau, Glowinski, and Periaux [2] have noted that with 
the choice of 8 such that I, 8 = A,( 1 - 0), the same linear 
elliptic operator, appears in the subproblems (2.17) or 
(2.19) and in the subproblem (2.18), respectively. Thus for 
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this choice the storage costs in the problem can be reduced 
by a factor of two. Unfortunately, this economy is not 
obtained when a discontinuous pressure basis is used, in 
view of the somewhat different substructuring technique 
that is required in each of the two subproblems in order to 
eliminate the nodal variables in the interior of the elements. 
However, the other computational advantages of discon- 
tinuous pressure basis functions can more than compensate 
for this loss in storage efficiency, particularly since in any 
case, with the use of suitable data structures and solution 
algorithms, the overall storage requirement can be made 
quite small. 

III. In order to obtain the weak form of the subproblems 
(2.17 )-(2.19), we consider the following function spaces 

V= {uE(H’(~))~,u=u, onr,}, 

@= {pEL2(SZ)(orL2(R)/B,ifr2=@)}, 

An important particular case of V is 

V, = (II E (H1(L2))n, u = 0 on r,}. 

We now use the following notation to denote the bilinear 
forms ai ( ., . ) defined on V x V, and b( ., . ) defined on 
V x @, respectively, 

a; (u, w) = .r (qu . w + yv Vu:Vw) dx, R 

b(w,q)= -[ (V.w)qdx. 
R 

Also consider the trilinear form c( ., .. 
V x V x V,, given by 

for i= 1, 2, 
(2.20) 

(2.21) 

, . ) defined on 

c(u, v, w) = J, (u .Vv) . w dx. (2.22) 

Finally, we let ( ., . ) denote the duality pairing between V 
and its dual space V* (and ( ., . ),, denote the duality 
pairing between the corresponding trace spaces on r,), so 
that 

(f,w)=Snf.wdx and (g.w),z=jrlg-wdx. (2.23) 

The weak form of the subproblems (2.17)-(2.19) that 
must be solved in order to advance the solution at each time 
step is then given as follows: First we solve for u* E V and 
p* E @ from 

a$*, w) + NW, P*) 
= (f, w) + u,(‘-“)(u”, w) 

- C(UX, un, w) + (g, w>,, VW E v,, (2.24a) 

b(u*, 4) = 0, Vqe@, (2.24b) 

then solve for u** E V from 

u:‘--@(u**, w) + c(u**, u**, w) 

= (f, w) + a;yu*, w) 

-Ww,P”)+ <fAW>f-,> VW E v,, (2.25) 

and, finally, solve for II”+ ’ E V and p”+ i E @ from 

u$ln+ I, w)+b(w,pn+‘) 

= (f, w) + u;(lpO)(u**, w) 

- ctu**, u**, w) + (g, w>r*, VW E V,, (2.26a) 
n+l b(u ,q)=O, Vqe@. (2.26b) 

IV. For computational purposes, the unknowns are 
expanded in a finite element basis; this basis also provides 
the test functions used in Galerkin’s method to obtain the 
discretized equivalents of (2.24)-(2.26). For the two-dimen- 
sional test examples described in this paper, we have used 
the Crouzeix-Raviart quadrilateral element (the Q2 x Pi 
pair in the notation of Gunzburger [S]). Here, the velocity 
is approximated by continuous piecewise biquadratic func- 
tions, and the pressure is approximated by discontinuous 
piecewise linear functions. The velocity unknowns in each 
element are the nodal values at the corners, along the 
midpoint of each edge, and at the centroid. The pressure 
unknowns in each element are the nodal value and the 
derivatives at the centroid. The various integrals in 
(2.24)-(2.26) are evaluated elementwise, and in Cartesian 
coordinates, the use of a three-point Gaussian quadrature 
rule on each element is sufficient for obtaining an accuracy 
consistent with the order of the polynomial approximation 
used in the discretization. 

For solving (2.24), and similarly for (2.26), we use a 
reduced basis set on each element, in which the velocity 
unknowns at the centroid are eliminated from the com- 
ponents of (2.24b) at the centroid, and the pressure 
derivative unknowns are eliminated from the components of 
(2.24a) at the centroid. The substructuring performed in this 
fashion is stable and reduces the number of velocity 
unknowns on each element from 18 to 16, and the number 
of pressure unknowns from 3 to 1, without affecting the 
accuracy of the resulting solution in any way. The resulting 
bilinear form for the Stokes operator in the reduced velocity 
basis remains symmetric and positive-definite. 
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The evaluation of the stiffness matrix in (2.25) does 
not involve either the pressure basis functions or the 
incompressibility constraint. Therefore, in this case, the 
centroid velocity unknowns are stably eliminated from the 
components of the momentum equation at the centroid. 
However, as noted earlier, even if 0 is chosen such that 
A,0 = A,( 1 - 6), the resulting stiffness matrix for the bilinear 
Stokes operator a( ., .) is no longer equivalent to that 
obtained in the subproblems (2.24) and (2.26) in view of the 
fact that the element level substructuring for the two 
operators is performed differently. 

3. NUMERICAL METHODS 

I. The solution of the subproblems (2.24) and (2.26) is 
obtained by a reformulation as a saddle-point optimization 
problem for an augmented Lagrangian. We assume that the 
discrete form of these equations is given by 

A,U+BTP=b,, (3.1) 

BU= b,, (3.2) 

where UE RN, P E WM are the velocity and pressure nodal 
unknowns respectively, A i is a N x N symmetric, positive- 
definite matrix, and B is a M x N matrix. These equations 
are the Kuhn-Tucker 
variational problem, 

min 
YE@ 

where 

conditions for the saddle-point A,=Al+rBTB. 

Since the matrix operator BA; ‘BT in (3.8) is symmetric, 
positive-definite, its solution can be obtained by a conjugate 
gradient algorithm. This algorithm will only require the 
action of BA;‘BT on a vector, and the only difficulty here 
is computation of A;’ I/for arbitrary VE aN. However, this 
is equivalent to solving a matrix equation with the 
symmetric, positive-definite matrix A,, which can also be 
obtained by a conjugate gradient algorithm. The overall 
method, therefore, takes the form of a nested “inner-outer” 
iteration procedure, in which performance of the inner itera- 
tion is enhanced by the fact that the initial guess provided 
to it improves with the progress of the outer iteration. 

y(v, Q)=$% v, f’?,-(b,, V),+(BV-b,, Q)M. (3.4) 

For computational purposes, this Lagrangian is augmented 
by a quadratic term involving the constraint condition (3.2) 
to obtain 

%(V,Q,=$(A, v, v)N-(bl, v)N 

+ (BV-b,, Q),w+;r IIBV-b& (3.5) 

where r is a specified positive number. From the 
Kuhn-Tucker conditions for this Lagrangian, it is seen that 
the additional term vanishes at the saddle-point optimum, 
leading to exactly the same solution at the optimum as that 
obtained from the original Lagrangian in (3.4). However, 
the inclusion of this term improves the convergence of 
iterative dual minimization algorithms for solving (3.4), for 
reasons that we will consider briefly below (see [ 1, 71 for an 
extensive discussion). In addition, moderate values of r are 
sufficient for this benefit to be realized, so that the difficulties 
associated with numerical ill-conditioning of the matrix 

equations are not encountered. These difficulties, for exam- 
ple, would arise when penalty methods are used for solving 
(3.1) and (3.2), where a “cost” function that is very similar 
to (3.5) (but with Q set to zero) is directly minimized, 
with the constraint condition being enforced by heavily 
penalizing deviations of the solution from it by using very 
large values of r in the cost function. 

The dual minimization approach to the saddle-point 
problem for the augmented Lagrangian (3.5) is given by 

(3.6) 

where 

From (3.5), it follows by explicit computation that the 
minimization problem in (3.6) is equivalent to solving the 
matrix equation 

BAp’BTP= BA-‘b r r 1 -b 2, (3.8) 

where we have denoted 

(3.9) 

There are two important issues that arise in our 
implementation of this solution algorithm, which we discuss 
in some detail below. 

First, the use of a discontinuous basis for the pressure 
approximation enables the matrix A, to be directly assem- 
bled and explicitly generated, without having to separately 
form the A, and B matrices and carry out the various 
required matrix operations. This is because the nonzero 
contributions to each row of B (equivalently, each column 
of BT) can be independently generated and fully assembled 
from within a given element, so that the contribution of BTB 
to the matrix A, in (3.9) can be computed at the element 
level itself, and these contributions can be directly assem- 
bled to explicitly obtain the global matrix A,. This explicit 
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representation is useful because it allows the incomplete 
Cholesky factorization of this matrix to be computed and 
used as a preconditioner for it in the inner iteration. In addi- 
tion, although it would appear that the explicit computation 
of A, is not required for an unpreconditioned algorithm, 
where the required matrix-vector products can be carried 
out using the form in (3.9) itself, in practice, however, this 
would lead to much additional work in each iteration of the 
conjugate gradient algorithm. 

The second issue concerns the appropriate value for r in 
order to obtain the maximum computational efficiency. 
From (3.8) the convergence of the outer iteration depends 
on the numerical conditioning of the matrix product 

B[A,+rBTB]-’ BT-BII+rA,‘BTBIpl A,‘BT. (3.10) 

For large values of r, this matrix product is close to the iden- 
tity, explaining the effectiveness of the augmented term in 
improving the convergence of the outer iteration. At the 
same time, however, the condition number of A, increases 
with r, affecting the convergence properties of the inner 
iteration. This ill-conditioning can be understood by con- 
sidering two nearby vectors, with the first lying in the null 
space of the matrix B (which consists of all vectors that 
satisfy the discrete solenoidal condition) and the second 
being outside this null space. It is easily seen from (3.10) that 
for sufficiently large values of r, the separation of the output 
vectors after premultiplication by A, can be up to a factor of 
r jl Bll* over that in the two original input vectors. This 
clearly indicates that there is an intermediate optimum 
value for r that will balance these two conflicting concerns. 
In order to obtain an estimate for this optimum value, we 
note from (3.10) that a value of r that is at least as large as 
the inverse of the largest eigenvalue of the symmetric, semi- 
definite matrix operator A 1’ BTB would seem to be required 
for improving the conditioning of the outer iteration. The 
magnitude of this largest eigenvalue will depend on the 
details of the discretization and on the convergence 
tolerance that is used in the solution of the matrix systems 
involving Al. However, it can be estimated in a prepro- 
cessing step prior to the actual computation by a simple 
application of the Power method. In practice, we have 
found the values of r obtained in this way to be quite 
satisfactory and the performance of the algorithm to be 
quite insensitive to large variations in r about the true 
optimum. 

II. The solution of the nonlinear subproblem (2.18) is 
obtained by reformulating it as the problem of determining 
the vector that will minimize the least squares norm of the 
nonlinear residual. This is a standard optimization problem, 
but with a special form that can be exploited to develop 
some sophisticated algorithms. The specific algorithm that 
we have used is the nonlinear conjugate gradient method 

[6, 131 which is simple to program and has low storage 
requirements, although it does not have the higher-order 
convergence of the Gauss-Newton or the Levenberg- 
Marquadt methods that are typically recommended for 
such problems in the nonlinear optimization literature 
c3, 141. 

The overall efficiency of the nonlinear conjugate gradient 
algorithm. can be considerably improved by using certain 
problem-specific details for some of the critical steps in the 
basic algorithm, including in particular, the preconditioning 
strategy, the gradient computation, and the line search 
minimization. These aspects are discussed in detail below. 
We note that a suitable preconditioning is absolutely essen- 
tial for the success of least squares residual minimization 
algorithms, since the numerical condition number of the 
original discrete problem is squared by this reformulation, 
thereby increasing the difficulty of obtaining iterative 
convergence. 

We assume that the discrete form of (2.18) can be written 
as 

R(U)~A*U+C(U)U-F=O, (3.11) 

where U E .?XN is the vector of velocity nodal variables, 
R: WN + aN is the nonlinear residual operator, A, is a 
N x N symmetric, positive-definite matrix, C is a N x N 
matrix representing the convective part of the inertial non- 
linearity, and FeWN is the known right-hand side vector. 
The explicit dependence of R on the discrete vector U is a 
notational convenience, but in practice R is always 
evaluated from known quantities by direct integration of the 
weak form of the continuous equivalent of (3.11), so that, 
for example, the C matrix above is never generated or 
stored. 

The equivalent preconditioned least-squares residual 
minimization problem can then be formulated as finding the 
vector UE WN such that 

where 

min J(V), 
VEWN 

(3.12) 

J(v) = +(A, w, w), 

and WE gN is obtained from 

(3.13) 

A,W=R(V). (3.14) 

The requirement that the solution of the minimization 
problem (3.12) be identical to the solution of the nonlinear 
problem (3.11) is satisfied by replacing A, in (3.13) and 
(3.14) by any other preconditioning operator that is an 
isomorphism. As such, therefore, the identity operator or 
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any other suitable self-adjoint operator can be used in its 
place, although the problem formulation clearly suggests 
that A, is quite appropriate in view of the fact that it is the 
Stokes part (with homogenous boundary conditions) of the 
nonlinear subproblem (2.18). The maximum benefit from 
this particular preconditioning will be realized when the 
relative magnitude of the nonlinear terms in (3.11) is small 
(equivalently, for small values of either the Reynolds 
number or the time step At), when it is practically the exact 
inversion of the nonlinear operator. 

We note that the evaluation of Wfrom (3.14) requires the 
solution of a symmetric, positive-definite, matrix system 
involving Al, and this can be obtained by a conjugate 
gradient iteration. This gives the algorithm an inner-outer 
iteration flavor that is similar to that described previously 
for the constrained saddle-point optimization problem, 
except that in the present case, the outer iteration uses the 
nonlinear conjugate gradient algorithm with line search 
minimization. 

The description of the nonlinear conjugate gradient algo- 
rithm for (3.12) is given below, in which the PolakkRibiCre 
formula is used for performing the solution updates in each 
iteration [ 11. In this algorithm the vectors VE L%?~ denote 
solution iterates, G EL’&?~ denote gradient directions, and 
H E $A? N denote search directions. 

1. Initialization. Given V,,. 

(a) compute G, from A,Go = J’( VO). 

(b) set Ho+- G,. 

2. For n > 0 until convergence do. 

(a) line search minimization, compute 
1, = arg min, E ti J( V, - AH,). 

@I set J-‘,+, + V,,-L,H,,. 

(c) computeG,+, from A2G,+,=J’(V,+,). 

(d) compute 
in = WAG,+ I - GnL G,, I)N/(AzG~, G~)N. 

(e) SetHn+l+G,+~+y,Hn. 
(f) set n t n + 1 and go to step (a). 

3. Termination, Set U + V, + , . 

The efficient implementation of this algorithm requires 
the consideration of some problem-specific aspects, and in 
particular, the three most important among these are 
discussed in some further detail below. 

First, consider the computation of J( V) that is required 
for the line search minimization in step 2(a) above. Using 
the definition, this is a two-step process, in which, given V, 
we first solve for W from (3.14), and then compute J(V) 
using the definition in (3.13). 

Second, it is clear that each evaluation of J( V) as outlined 
above is quite expensive, since it requires an inner iteration 

for solving (3.14). However, the overall number of such 
evaluations that are required in the line search minimization 
(for different values of A) can be reduced by using the fact 
that R is a quadratic function of its arguments. Therefore, 
an explicit expression for f(A) E .J( V - ;1H) can be derived 
which is a quartic polynomial in A, with coefficients that can 
be computed from just three inner iterations. To see this, 
note that from (3.11) we can write 

B(A) = R( V- AH) = R,(V) - ;IR1( V, H) + i”R,(H), 
(3.15) 

where the terms on the right-hand side are defined as 

R,=A,V+C(V)V-F, 

R, = A,H+ C( V)H+ C(H) V, R2 = C(H) H. 

Thus, from (3.14), we can write 

-w^(+A,%(/Z)= W,-LW,+A*W,, 

where 

A, W,= R, for i=O, 1, 2, 

(3.16) 

(3.17) 

(3.18) 

so that only three inner iterations are required to completely 
determine YV. Furthermore, since f is a quadratic 
functional of w, we can use the decomposition in (3.17) to 
obtain an explicit quartic polynomial in ;1 of the form 

f(n) = Jo - 1J, + L*J, - 13J3 + /l”J,, (3.19) 

where 

Jo = tbh Wo, W,,),v, JI = (A2 WI > W‘,)N, 

J,=;(A,W,, w,)N+ (AZWO, Wz),“‘, (3.20) 

J3 = (A2 W, > W2)m J4 = i(A, W,, W,),. 

The value of il that minimizes f(A) in (3.19) can now be 
efficiently computed using Newton’s method, i.e., starting 
from an initial guess A,, the iteration 

Ai+,+[y]-‘[~] (3.21) 

is performed until the desired convergence is obtained. 
Third and finally, we have the computation of the 

derivative J’(V), which can be obtained from the basic 
definition using the chain rule. Consider a perturbation to 
the velocity nodal unknowns in the form V + 6 V, where in 
order for 6 V to be admissible perturbation it should vanish 
at those nodal points where the values of V are specified, i.e., 
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at the nodes where Dirichlet boundary conditions 
enforced. Then, neglecting higher order terms in 
perturbation, we have 

are 
the 

4. NUMERICAL EXPERIMENTS 

I. The numerical results described here were obtained 
on an IBM RS/6000, Model 320 workstation using the 
XLF FORTRAN compiler with full optimization. The 
problem sizes and various other parameters in these 
examples were generally chosen so that the program 
execution time was between l-10 h. 

(J’(V), sv,= (A,SW, WIN. (3.22) 

However, from a Taylor’s series expansion of (3.14), we 
obtain, after neglecting higher order terms, 

A, 6W= R’( V) SV, (3.23) 

which when substituted into (3.22) yields 

(J’(V), SV), = (R’(V) . sv, W), (3.24) 

and, since the perturbation 6V is arbitrary, we obtain 

J’(V) = R’(V)’ W. (3.25) 

The use of this formula would seem to require the explicit 
evaluation of the matrix R’(V), but we note that the pertur- 
bation vector 6 V in (3.22) can be taken in the direction of 
the various unit vectors in gN, and in each case, using 
(3.24), this allows the component of J’( V) in the direction of 
that particular unit vector to be directly evaluated from the 
known quantities on the right-hand side. For general 
nonlinear functions, the vector R’(V) . SV can be obtained 
from a difference formula, but in the present case an exact 
evaluation is possible because of the simple quadratic 
nonlinearity in R( V), i.e., 

R’(V).6V=A,6V+C(V)6V+C(6V)V. (3.26) 

Again, similar to the discussion following (3.1 l), the vector 
J’(V) can be directly generated from the weak form of the 
continuous equivalent of (3.24), by noting the equivalence 
between unit vectors in aN and the finite element test 
functions that are used as basis vectors for the discrete 
approximation of the function space V,. 

Finally, we note that the computation of the gradient 
direction will require two inner iterations, the first to obtain 
W which is used in (3.24) to compute J’(V), and following 
this, the second to obtain Gin step 2(c) of the algorithm. We 
note, however, that W is also required in the line search 
minimization routine (where we had denoted it as W,) so 
that this computation need not be repeated if the results are 
saved. In summary, therefore, an entire iteration of the outer 
nonlinear conjugate gradient iteration algorithm can be 
carried out with just four different inner preconditioned 
conjugate gradient iterations requiring the solution of 
matrix systems involving A, for various right-hand sides. 

391 

We briefly remark on the stopping condition for detecting 
convergence in the inner conjugate gradient iterations. 
These invariably involve the velocity variables that are 
known to have an O(1) scaling, so that for this case 
convergence is assumed if rk, the residual at the inner 
iteration k satisfies a condition of the form 

IIrk {to11 JN, to12 IIroll2>~ (4.1) 

where we typically set tol, = 1O-6 and tol, = lo-*. The use 
of a relative tolerance criterion in addition to the more 
usual absolute tolerance criterion is sometimes helpful in 
preventing the stagnation of the outer iteration. 

11. Following Kim and Moin [9], the following exact 
solution of the Navier-Stokes equations was used to check 
the accuracy and consistency of the time discretization, 

u = C -cm x sin y e, + sin x cos y e,] exp( - 2vt), 

P = - $(cos 2x + cos 2~) exp( -4vt). 

(4.2a) 

(4.2b) 

These calculations were performed on the rectangular 
domain (0, x) x (0, rc), and the exact solution from (4.2) at 
t+i,dt,t+(I,+A,)dt,andt+dt,respectively,wasused 
to provide the boundary conditions for three individual 
operator equations. In Fig. 1, we show the maximum 

o.ooL’, 0 ’ ’ 1 
0 5 10 15 20 

0.00”. 8 I ” ” ‘1 1 
0 5 10 15 20 

FIG. 1. Relative errors in time-integration for the model problem with 
solution given by Eq. (4.2). 
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relative error Ill-uII m /[lull o. (where B is the computed solu- 
tion) as a function of time, for various values of At on two 
different uniform meshes. From this the overall method is 
seen to be consistent, with the relative error (for fixed At) 
decreasing with the spatial refinement of the mesh. In addi- 
tion, the results indicate that the scheme is at least first order 
with respect to time for a fixed spatial discretization. 
However, as Kim and Moin [9] have noted for the scheme 
in their paper, second-order convergence might be obtained 
by simultaneous time and space refinement, at a fixed 
Courant number. Another difficulty here, is the way in 
which time-dependent boundary conditions are treated 
in the operator split equations, so that higher order 
convergence might also be obtained for problems with 
time-independent boundary conditions. 

III. The second test example is the well-known driven 
cavity problem and, following Soh and Goodrich [ 151, we 
have considered the time evolution of the flow from an 
initial quiescent state. Here initially, At = 0.05, and this 
value was doubled every 40 time steps up to a maximum 
value of 0.5. The time integration was discontinued when 
the velocities have stabilized to three decimal place accuracy 
for several time steps. All calculations were performed on a 
uniform mesh of 16 x 16 elements. 

Our results at a Reynolds number of 400 are in excellent 
agreement with the computations of Soh and Goodrich 
[15]. In Figs. 2aad, the streamlines inidcate the initial 
development of a jet-like flow near the surface of the cavity, 
which is similar to a Stokes boundary layer, except in the 
regions close to the cavity walls where the flow must turn 
around. The fluid velocities of the return flows in the interior 
of the cavity are much weaker at this point. As the Stokes 
layer thickens, the center of the eddy which initially moves 
laterally towards the right wall, begins to retract and move 
obliquely towards its ultimate steady location, which is 

1.0 r 

x 0.5 

Re=400 
16x16 mesh 

0.0 
5 0.0 0.5 1.0 

” 

( 

-J1/0.037 
t =2 

-Jl/o 009 
t=16 

-J1/0.053 
t=4 

FIG. 2. Uniformly spaced streamfunction contours for driven cavity 
problem, Reynolds number 400. 

slightly to the upper right of the center of the cavity. By our 
earlier criterion, this ultimate steady flow is attained by 
about t = 45. 

The variation with time of the horizontal velocity u along 
the vertical centerline of the cavity is plotted in Fig. 3a, and 
this shows the thickening of the Stokes boundary layer, as 
well as the increase in the intensity of the return flow in the 
lower portion of the cavity with time. The variation of the 
vertical component of the velocity u along the horizontal 
centerline of the cavity is plotted in Fig. 3b, which shows 
that significant flows are encountered here only after about 

0.5 

0.0 

1 

FIG. 3. (a) Variation of u along vertical centerline of the cavity. (b) Variation of u along horizontal centerline of cavity. Reynolds number 400. 
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-q//o.034 
t=2 

w 0 0 
-Jr/o.047 
t=4 

FIG. 4. Uniform spaced streamfunction contours for driven cavity 
problem, Reynolds number 1000. 

t = 4. It also shows the asymmetry of the ultimate steady 
flow, with the stronger downward velocity in the right 
portion of the cavity. 

We have also carried out a computation at a Reynolds 
number of 1000, and the streamline plots at various times 
are shown in Figs. 4a-d, and the variations of u and u along 
the vertical and horizontal channel centerlines, respectively, 
are shown in Figs. 5a, b. These flows are somewhat more 
intense, although the results are qualitatively similar to that 
obtained at the lower Reynolds number. Here the ultimate 
steady flow is obtained at about t = 88. The steady value of 

Re=lOOO 
16 x 16 mesh 

the stream function at the center of the primary eddy is 
around -0.13, which compares with a value of about 
-0.12 reported by various other investigators, using quite 
different methods (as reviewed in [9]). 

IV. The final test example is that of a uniform flow past 
a cascase expansion, for which the stationary flows have 
been previously considered by Milos, Acrivos, and Kim 
[lo]. The computational domain for this problem is 
the rectangular region {0,20} x (0, 2). The boundary 
conditions used are 

v = 0, 0, YG 1, 

u= U(y), { y>l, 
at x = 0, (4.3a) 

v = 0, 
al4 
- = 0, 
aY 

at y = 0, 2, (4.3b) 

au au v---=0, -=o, ax ax at x= 20, (4.3c) 

Here, the boundary conditions (4.3b) at y = 0 and y = 2 are 
obtained from symmetry considerations, and outflow 
boundary conditions are used at x = 20. We note that the 
location of this outflow boundary is sufficiently distant that 
it does not affect the upstream details of the flow field for the 
values of the Reynolds numbers at which our computations 
were performed. The inlet flow velocity is taken in the form 
of a uniform flow mediated by a boundary layer (of 
thickness 0.25) at the walls of the channel expansion, i.e., 

L 2r] - U(y)= 2?j3 + q4, 1 < y d 1.25, 
1 y > 1.25, (4.4) 

where ye = 4( y - 1). The computational mesh consisted of 20 
elements of uniform size in the y direction, and 80 elements 

Re =I000 
I6 x I6 mesh 

(b) 

0.0 0.5 

‘E 

FIG. 5. (a) Variation of u along vertical centerline of the cavity. (b) Variation of u along horizontal centerline of cavity. Reynolds number 1000. 



RAhIESH NATARAJAN 
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0 10 

0 
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FIG. 6. Streamline contours for the flow evolution in the symmetric 
cascade expansion for Reynolds number 50, shown at the values of time 0, 
10,20,30,40,50,60. 

in the x direction which were graded in order to concentrate 
elements in the expansion region. 

The steady Stokes solution was used as the initial 
condition for a time-dependent calculation at a Reynolds 
number of 50 with dt = 1.0. The streamlines in Fig. 6 show 
the initial formation of recirculation region and its subse- 
quent elongation with time. The corresponding evolution of 
the vorticity contours are shown in Fig. 7. 

In separate calculations at a Reynolds number 100 for 
this problem, we have obtained results for the steady values 
of the eddy reattachment length, and for the location of the 
eddy center and the magnitude of the stream function at this 
center, that are all in good agreement with the results of 
Milos, Kim, and Acrivos [lo], obtained using very different 
methods. 

FIG. 7. Corresponding vorticity contours at the same times as in 
Fig. 6. 

5. FUTURE WORK 

We envisage three main directions for our future work, as 
briefly outlined below: 

1. The present scheme is being extended to study fully 
three-dimensional test problems, where its low storage and 
computational requirements will make it advantageous 
over many other competing methods. 

2. The test applications studied here all involve 
transient flows that approach an ultimate steady state. We 
are developing test applications that will consider flows in a 
parameter range where limit cycles and other more 
complicated time-dependent behavior might be found. 

3. The performance of the numerical algorithms 
described here on vector and parallel computers is of con- 



siderable interest. In general the preconditioned conjugate 
gradient method, which is the main computationally 
intensive kernel in the program, is very well suited for the 
architectures of these computers. However, the incomplete 
factorization preconditioner used in the current program 
may be inappropriate here because of its highly recursive 
and serial nature, although in previous work [ 111, we have 
shown that this preconditioner can be implemented on a 
shared-memory parallel computer, using a run-time 
analysis to automatically identify and schedule the parallel 
work. In order related work [12], we have implemented a 
domain-decomposition version of the basic conjugate 
gradient method on a message-passing parallel computer, 
and this work is being extended to the development of 
effective preconditioning strategies on the same platform. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 
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